skip to main content


Search for: All records

Creators/Authors contains: "Batelaan, Herman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Decoherence can be provided by a dissipative environment as described by the Caldeira–Leggett equation. This equation is foundational to the theory of quantum dissipation. However, no experimental test has been performed that measures for one physical system both the dissipation and the decoherence. Anglin and Zurek predicted that a resistive surface could provide such a dissipative environment for a free electron wave passing close to it. We propose that the electron wave’s coherence and energy loss can be measured simultaneously by using Kapitza–Dirac scattering for varying light intensity. 
    more » « less
  2. null (Ed.)
  3. Abstract

    Decades ago, Aharonov and Bohm showed that electrons are affected by electromagnetic potentials in the absence of forces due to fields. Zeilinger’s theorem describes this absence of classical force in quantum terms as the “dispersionless” nature of the Aharonov-Bohm effect. Shelankov predicted the presence of a quantum “force” for the same Aharonov-Bohm physical system as elucidated by Berry. Here, we report an experiment designed to test Shelankov’s prediction and we provide a theoretical analysis that is intended to elucidate the relation between Shelankov’s prediction and Zeilinger’s theorem. The experiment consists of the Aharonov-Bohm physical system; free electrons pass a magnetized nanorod and far-field electron diffraction is observed. The diffraction pattern is asymmetric confirming one of Shelankov’s predictions and giving indirect experimental evidence for the presence of a quantum “force”. Our theoretical analysis shows that Zeilinger’s theorem and Shelankov’s result are both special cases of one theorem.

     
    more » « less